skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kalinkin, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The successful realization of the EIC scientific program requires the design and construction of high-performance particle detectors. Recent developments in the field of scientific computing and increased availability of high performance computing resources have made it possible to perform optimization of multi-parameter designs, even when the latter require longer computational times (for example simulations of particle interactions with matter). Procedures involving machine-assisted techniques used to inform the design decision have seen a considerable growth in popularity among the EIC detector community. Having already been realized for tracking and RICH PID detectors, it has a potential application in calorimetry designs. A SciGlass barrel calorimeter originally designed for EIC Detector-1 has a semi-projective geometry that allows for non-trivial performance gains, but also poses special challenges in the way of effective exploration of the design space while satisfying the available space and the cell dimension constraints together with the full detector acceptance requirement. This talk will cover specific approaches taken to perform this detector design optimization. 
    more » « less
  2. Free, publicly-accessible full text available March 1, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Abstract Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometre-scale space. These complex systems manifest a variety of shapes1–3, traditionally explored using non-invasive spectroscopic techniques at low energies4,5. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the collective-flow-assisted nuclear shape-imaging method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analysing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors6,7. We benchmark this method in collisions of ground-state uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales. 
    more » « less
    Free, publicly-accessible full text available November 7, 2025
  5. Free, publicly-accessible full text available December 1, 2025
  6. Free, publicly-accessible full text available November 1, 2025
  7. A<sc>bstract</sc> We report multi-differential measurements of strange hadron production ranging from mid- to target-rapidity in Au+Au collisions at a center-of-momentum energy per nucleon pair of$$ \sqrt{s_{\textrm{NN}}} $$ s NN = 3 GeV with the STAR experiment at RHIC.$$ {K}_S^0 $$ K S 0 meson and Λ hyperon yields are measured via their weak decay channels. Collision centrality and rapidity dependences of the transverse momentum spectra and particle ratios are presented. Particle mass and centrality dependence of the average transverse momenta of Λ and$$ {K}_S^0 $$ K S 0 are compared with other strange particles, providing evidence of the development of hadronic rescattering in such collisions. The 4πyields of each of these strange hadrons show a consistent centrality dependence. Discussions on radial flow, the strange hadron production mechanism, and properties of the medium created in such collisions are presented together with results from hadronic transport and thermal model calculations. 
    more » « less